• 热点推荐:
 首页 > 问答 / 正文
二阶线性微分方程通解公式 ^2+p&lambda

Time:2025年02月23日 06时13分09秒 Read:121 作者:admin

1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)。

2、两根相等的实根:y=(C1+C2x)e^(r1x)。

3、一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)。

二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。

自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。

若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。

特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。

Copyright © 2025 豆禾网 | 网站备案号:新ICP备2025018319号-20 | 网站地图

声明: 文章来自网络,版权归原作者所有,如果有侵犯,请留言给我们及时删除 。