• 热点推荐:
 首页 > 资料 / 正文
Lagrange中值定理 并进行了初步证明

Time:2025年02月23日 04时19分57秒 Read:69 作者:admin

拉格朗日中值定理(Lagrange中值定理)又称拉氏定理,是微分学中的基本定理之一,反映可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。

拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。

法国数学家拉格朗日于1797年在其著作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。

Copyright © 2025 豆禾网 | 网站备案号:新ICP备2025018319号-20 | 网站地图

声明: 文章来自网络,版权归原作者所有,如果有侵犯,请留言给我们及时删除 。